the Ir-H distance  $[ca \ 1.8 \text{ Å}]$  to a tetrahedrally disposed endo H atom on C(6) [C-H = 0.95 Å] is directly comparable with those in the C-H-M bridges in  $[Fe(\eta^3-C_8H_{13}){P(OMe)_3}_3]BF_4$  (Brown, Williams, Schultz, Stucky, Ittel & Harlow, 1980), in [Mn( $\eta^3$ -C<sub>6</sub>H<sub>8</sub>Me)(CO)<sub>3</sub>] (Schultz, Teller, Beno, Williams, Brookhart, Lamanna & Humphrey, 1983) and in  $[Fe_4(\eta^2-CH)(H)(CO)_{12}]$  (Beno, Williams, Tachikawa & Muetterties, 1980) [1.80–1.87 Å; all neutron diffraction studies]; and (iv) omission of the bridging H atom [H(6B)] from the scattering model (followed by reconvergence) results in a significant increase in wR[0.0339 to 0.0342; ratio significant at better than 99.5% confidence level (Hamilton, 1965)]. Omission of H(6B) from the scattering model also generates a well defined difference Fourier peak  $\left[ \Delta \rho \simeq 0.5 \text{ e} \text{ Å}^{-3} \right] 1.7 \text{ Å}$ from Ir, 1.4 Å from C(6) and 0.5 Å from H(6B). The peak persists  $[\Delta \rho \simeq 0.4 \text{ e} \text{ Å}^{-3}]$  to become the dominant feature of a  $(\sin\theta)/\lambda < 0.3 \text{ Å}^{-1}$  map, but is further displaced from the H(6B) site  $[\Delta = 0.6 \text{ Å}]$ . The displacement results largely from the persistence (in the difference maps) of the pseudo-mirror plane at z = 0. The calculated H(6B) sites lies just 0.42 Å from the z = 0 plane and the residual peak lies on that plane.

Although the exact location of the bridging H atom is unknown, the known geometry of C(6) dictates a strong interaction. Crabtree et al. (1985) have suggested  $r_{\rm bp} = d_{\rm bp} - r_M$  as a measure of the interaction strength  $[d_{\rm bp}]$  is the metal to C-H bond-pair centroid distance and  $r_M$  is the metal-atom covalent radius]. For the title complex (with C-H = 1.08 Å),  $d_{\rm bp} \simeq 1.9$  Å and  $r_{\rm bp} \simeq$ 0.6 Å. Both values are at the 'strong' end of the Crabtree *et al.* (1985) compilation. The C-H-M angle  $(\simeq 106^{\circ})$  is similar to those [96, 99°] in [Mo<sub>2</sub>- $(\eta$ -C<sub>4</sub>H<sub>4</sub>)<sub>2</sub>(C<sub>16</sub>H<sub>25</sub>)]<sup>+</sup> (Green, Norman & Orpen, 1981) and  $[Fe_2(\eta - C_5H_5)_2(CO)(CH_3)(Ph_2PCH_2PPh_2)]^+$ (Dawkins, Green, Orpen & Stone, 1982), both of which exhibit similarly strong agostic interactions to  $\beta$  C-H groups  $[r_{bp} = 0.61, 0.65 \text{ Å}; \text{ Crabtree et al. (1985)}]$  to that in the title complex.

Except for  $F(1)\cdots H(6A)$  [2.5 Å] all ion...ion contacts are close to or exceed the normal van der Waals separations.

## References

- ABRAHAMS, S. C. & KEVE, E. T. (1971). Acta Cryst. A27. 157 - 165
- ALCOCK, N. W. (1969), Acta Cryst. 25, 518-520.
- BENNETT, M. A., MCMAHON, I. J., PELLING, S., ROBERTSON, G. B. & WICKRAMASINGHE, W. A. (1985). Organometallics, 4, 754-761.
- BENO, M. A., WILLIAMS, J. M., TACHIKAWA, M. & MUETTERTIES, E. L. (1980). J. Am. Chem. Soc. 102, 4542-4544.
- BROOKHART, M. & GREEN, M. L. H. (1983). J. Organomet. Chem. 250, 395-408.
- BROWN, R. K., WILLIAMS, J. M., SCHULTZ, A. J., STUCKY, G. D., ITTEL, S. D. & HARLOW, R. L. (1980). J. Am. Chem. Soc. 102, 981-987.
- BUSING, W. R. & LEVY, H. A. (1957). J. Chem. Phys. 26, 563-568.
- CORFIELD, P. W. R., DOEDENS, R. J. & IBERS, J. A. (1967). Inorg. Chem. 6, 197-204.
- CRABTREE, R. H., HOLT, E. M., LAVIN, M. & MOREHOUSE, S. M. (1985). Inorg. Chem. 24, 1986-1992.
- DAWKINS, G. M., GREEN, M., ORPEN, A. G. & STONE, F. G. A. (1982). J. Chem. Soc. Chem. Commun. pp. 41-43.
- GREEN, M., NORMAN, N. C. & ORPEN, A. G. (1981). J. Am. Chem. Soc. 103, 1269-1271.
- HAMILTON, W. C. (1965). Acta Cryst. 18, 502-510.
- International Tables for X-ray Crystallography (1974), Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1976), ORTEPII, Report ORNL-5138, Oak Ridge National Laboratory, Tennessee, USA.
- MCLAUGHLIN, G. M., TAYLOR, D. & WHIMP, P. O. (1977). The ANUCRYS Structure Determination Package. Research School of Chemistry, The Australian National Univ., Canberra, Australia.
- MEULENAER, J. DE & TOMPA, H. (1965). Acta Cryst. 19, 1014-1018.
- MUETTERTIES, E. L. (1983). Chem. Soc. Rev. 12, 283-320.
- RAE, A. D. (1974). Acta Cryst. A 30, 583.
- RAE, A. D. (1976). RAELS. A Comprehensive Constrained Least-Squares Refinement Program. (Current version RAELS80.) Univ. of New South Wales, Sydney, Australia.
- SCHULTZ, A. J., TELLER, R. G., BENO, M. A., WILLIAMS, J. M., BROOKHART, M., LAMANNA, W. & HUMPHREY, M. B. (1983). Science, 220, 197-199.

Acta Cryst. (1988). C44, 1386-1388

## Structure of Tris(diethyldithiophosphinato)chromium(III)

## By G. Svensson and J. Albertsson

Inorganic Chemistry 2, Chemical Center, University of Lund, PO Box 124, S-221 00 Lund, Sweden

(Received 17 February 1988; accepted 12 April 1988)

Abstract.  $[Cr{S_2P(C_2H_5)_2}], M_r = 511.67, \text{ triclinic}, 1199.8 (2) Å^3, Z = 2, D_m = 1.39 \text{ g cm}^{-3}, P\overline{1}, a = 9.638 (1), b = 10.017 (3), c = 13.983 (3) Å, 1.416 (1) \text{ g cm}^{-3}, \lambda(Mo Ka) = 0.71069 Å, Abstract Abst$  $\alpha = 86.25$  (2),  $\beta = 75.15$  (1),  $\gamma = 66.95$  (1)°, V =

 $D_r =$  $\mu =$  $11.86 \text{ cm}^{-1}$ , F(000) = 534, T = 298 K, 5795 X-ray

0108-2701/88/081386-03\$03.00

© 1988 International Union of Crystallography

Cr

S(1)

S(2) S(3) S(4)

S(5)

S(6) P(1)

P(2)

P(3) C(1)

C(2)

C(3)

C(4) C(5)

C(6)

C(7) C(8)

C(9)

C(10

C(11 C(12

intensities were measured on a four-circle diffractometer. Least-squares refinement gave R = 0.032 for 3201 unique observed reflections  $[I > 3\sigma(I)]$ . The Cr atom is coordinated by six S atoms from three ligands in a distorted octahedral environment [Cr-S average 2.442 (8) Å]. The average twist angle  $\varphi$  between opposite triangular faces of the octahedra along the pseudo-threefold axis is 47.2 (8)°.

Introduction. Chromium(III) complexes with alkyl- and aryl-substituted dithiophosphinate and dithiophosphate ligands have been extensively studied by spectroscopic methods (e.g. Wasson, Wolterman & Stoklasa, 1973) and by magnetic measurements (e.g. Cavell, Byers & Day, 1971; Hertel & Kuchen, 1971). According to these measurements the CrS<sub>6</sub> octahedra are not affected by changes in the substituents on the P atom. For example the  $\mu_{\text{eff}}$  values range from 3.88 to 3.96 BM\* for a wide range of substituents (Kuchen & Rohrbeck, 1972). Until now only one X-ray crystal structure determination of a chromium(III) complex with this type of ligand has been reported,  $[Cr{S_2P(OC_2H_3)_2}]$ (Schousboe-Jensen & Hazell, 1972). In relation to our interest in the magnetic behaviour of dithiochelate complexes, we have undertaken a crystal structure analysis of  $[Cr \{S_2P(C_2H_2)\}_3]$  to determine the effect on the structure of replacement of the  $OC_2H_5$  with a  $C_2H_5$ group.

Experimental. The title compound was prepared as described by Kuchen, Metten & Judat (1964). Crystals were grown from a dioxan solution by slow evaporation, yielding thin blue plates; approximate dimensions of the crystal used  $0.25 \times 0.20 \times 0.02$  mm.  $D_m$  measured pycnometrically in cyclohexane. Enraf-Nonius graphite-monochromated CAD-4 diffractometer, Mo Ka radiation ( $\lambda = 0.71069$  Å),  $\omega/2\theta$  scan,  $\Delta\omega$  $=0.6^{\circ}+0.5^{\circ}\tan\theta$ . Unit cell from least-squares fit of 25 reflections with  $12 < \theta < 25^{\circ}$ . Data were corrected for Lorentz and polarization effects. Absorption correction (numerical integration) for crystal defined by 6 faces, (210), ( $\overline{250}$ ), ( $\overline{510}$ ), (010), (001), grid 14 ×  $12 \times 4$ , transmission factor 0.78–0.98. Three standard reflections measured every half hour showed no significant variation, 5795 reflections measured, 4193 unique,  $R_{int} = 0.027$ , 3201 with  $I > 3\sigma_c(I)$  used in refinement,  $\sigma_c(I)$  based on counting statistics. Index range  $h \to 11$ ,  $k \to 11 \to 11$ ,  $l \to 16 \to 16$  and  $h \to 6 \to 0$ ,  $k - 7 \rightarrow 7, l - 10 \rightarrow 10; 2\theta_{\text{max}} = 50^{\circ}.$ 

The structure was solved by Patterson methods and subsequent electron-density difference maps; all H atoms were located. Least-squares refinement; function minimized  $\sum w(|F_o| - |F_c|)^2$ ,  $w = [\sigma_c^2(F_o) + (0.02F_o)^2 + 0.3]^{-1}$ . The H atoms were refined with  $U_{iso}$ (methylene) = 0.098 (5) and  $U_{iso}$ (methyl) = Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters  $(Å^2)$  with e.s.d.'s in parentheses

| $U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}.$ |              |              |              |            |  |
|----------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|------------|--|
|                                                                                                          | x            | у            | z            | $U_{eq}$   |  |
|                                                                                                          | 0.23271 (6)  | 0.74259 (5)  | 0.73039 (4)  | 0.0424 (2) |  |
|                                                                                                          | 0.44083 (9)  | 0.75684 (9)  | 0.59439 (7)  | 0.0481 (3) |  |
|                                                                                                          | 0.07196 (9)  | 0.88451 (9)  | 0.62151 (7)  | 0.0495 (3) |  |
|                                                                                                          | 0.27041 (10) | 0.50284 (9)  | 0.67198 (7)  | 0.0509 (3) |  |
|                                                                                                          | 0.00763 (11) | 0.71840 (9)  | 0.84761 (7)  | 0.0558 (4) |  |
|                                                                                                          | 0.42091 (12) | 0.63566 (10) | 0.83101 (8)  | 0.0628 (4) |  |
|                                                                                                          | 0.18074 (12) | 0.96516 (10) | 0.81993 (10) | 0.0620 (4) |  |
|                                                                                                          | 0.27301 (10) | 0-87404 (9)  | 0.52604 (7)  | 0.0437 (3) |  |
|                                                                                                          | 0.07759 (11) | 0.52312 (9)  | 0-77900 (7)  | 0.0510 (4) |  |
|                                                                                                          | 0.32725 (14) | 0.83550 (11) | 0.89675 (8)  | 0.0674 (5) |  |
|                                                                                                          | 0.2726 (5)   | 1.0536 (4)   | 0-4968 (3)   | 0.056 (2)  |  |
|                                                                                                          | 0.2393 (6)   | 1.1498 (5)   | 0-5842 (4)   | 0.077 (2)  |  |
|                                                                                                          | 0.3049 (5)   | 0.7936 (4)   | 0-4056 (3)   | 0.060 (2)  |  |
|                                                                                                          | 0.2883 (6)   | 0.6488 (5)   | 0-4090 (4)   | 0.077 (2)  |  |
|                                                                                                          | -0.0753 (5)  | 0-5102 (4)   | 0.7301 (4)   | 0.066 (2)  |  |
|                                                                                                          | -0.1089 (6)  | 0.6045 (6)   | 0.6438 (4)   | 0.083 (2)  |  |
|                                                                                                          | 0.1146 (6)   | 0.3755 (4)   | 0-8643 (4)   | 0.071 (2)  |  |
|                                                                                                          | 0.2468 (7)   | 0-3530 (4)   | 0.9095 (4)   | 0.091 (3)  |  |
|                                                                                                          | 0-2151 (8)   | 0-8375 (7)   | 1.0247 (4)   | 0.102 (3)  |  |
| )                                                                                                        | 0-3025 (12)  | 0.7398 (10)  | 1.0910 (5)   | 0-154 (5)  |  |
| )                                                                                                        | 0.4758 (8)   | 0.9030 (6)   | 0.8996 (5)   | 0.097 (3)  |  |
| )                                                                                                        | 0.5570 (8)   | 0.9373 (8)   | 0.8017 (6)   | 0.115 (4)  |  |
|                                                                                                          |              |              |              |            |  |

0.116 (4) Å<sup>2</sup>. R = 0.032, wR = 0.041, S = 1.03,  $\Delta \rho_{\text{max}}/\Delta \rho_{\text{min}} = 0.60/-0.49$  Å<sup>-3</sup>,  $(\Delta/\sigma)_{\text{average}} = 0.07$  (8), 291 parameters. No extinction effects were detected. The rather large displacement factor for the terminal C(10)H<sub>3</sub> group indicates disorder, which could not be described by alternative positions in the refinement.

The data and the final model were compared by probability plotting (Abrahams & Keve, 1971) of ordered values of  $\delta R_i = \Delta F_i / \sigma (|F_o|_i) vs$  those expected for ordered normal deviates  $[\sigma (|F_o|_i) = w^{-1/2}]$ . The result was a slope of 0.967 (2), an intercept of 0.06 (2) and a correlation coefficient of 0.9952. The slope and intercept of the  $\delta R$  plot and the related S value indicate that the systematic errors are small and the  $\sigma (|F_o|)$  is on average rather well estimated.

Atomic scattering factors and anomalous-dispersion corrections were taken from *International Tables for X-ray Crystallography* (1974). The system of computer programs used in this study is described by Lundgren (1982).

**Discussion.** Table 1 shows final fractional coordinates and equivalent isotropic displacement parameters for non-H atoms.\* The structure consists of discrete molecules of  $[Cr{S_2P(C_2H_5)_2}_3]$  in which the Cr atom is coordinated by six S atoms in a distorted octahedral environment. In Fig. 1 the complex is viewed along the pseudo-threefold axis. Selected bond distances and

<sup>\* 1</sup> BM (Bohr magneton) =  $9.274 \times 10^{-24} \text{ J T}^{-1}$ .

<sup>\*</sup> Lists of structure factors, anisotropic displacement factors and H-atom coordinates have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44959 (32 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

angles are shown in Table 2. The Cr–S distances range from 2.428 (1) to 2.451 (1), average 2.442 (8) Å.\* This is in agreement with the average distance of 2.425 (5) Å found in the related compound  $[Cr{S_2}]$ P(OC<sub>2</sub>H<sub>2</sub>)<sub>2</sub>] (Schousboe-Jensen & Hazell, 1972). The distortion from octahedral geometry may be described by the twist angle  $\varphi$  between opposite triangular faces of the octahedra along the pseudo-threefold axis (Stiefel & Brown, 1972). In an undistorted octahedron this angle is 60° and for a triangular prism it is 0°. In the title compound the three twist angles are 47.44(5), 47.82 (5) and 46.28 (5), average 47.2 (8)°, indicating that the coordination polyhedron is almost octahedral. The similarity between the three angles clearly shows the almost perfect threefold axis, neglecting the ethyl groups. In  $[Cr{S_2P(OC_2H_5)_2}_3]$  the average twist angle is 46.9 (9)°.

The P-S bond distances are all equal, average 2.014 (8) Å, as is usually found in coordination compounds of this type. Thus the negative charge is delocalized over the two P-S bonds which have bond lengths intermediate between a single and a double bond (Wasson, Wolterman & Stoklasa, 1973). The P-C and C-C bond lengths are unexceptional, average 1.822 (7) and 1.495 (16) Å, respectively.

The ethyl groups have different conformations in the three ligands. Their appearance can be described by the torsion angle C-C-P-C (Table 2). In the nomenclature proposed by Klyne & Prelog (1960) this corresponds to two (ap,-ap) and one (-sc,-ap) conformation<sup>†</sup> for the three ligands. This obviously breaks the threefold symmetry of the complex. The reason for this variation in conformation must be the packing of the complexes in the crystal. The structure is

\* Standard deviations of average values x are here and below estimated as  $[\sum (x-\bar{x})^2/(n-1)]^{1/2}$ .

<sup>†</sup> For  $\pm ap$  (antiperiplanar) the torsion angle  $\tau$  is in the range  $\pm 180 \pm 30^{\circ}$ ; for  $\pm sc$  (synclinal)  $\tau$  is  $\pm 60 \pm 30^{\circ}$ ; and for  $\pm ac$  (anticlinal)  $\tau$  is  $\pm 120 \pm 30^{\circ}$ .

Fig. 1. Perspective view of the title compound with the atomnumbering scheme.

Table 2. Bond distances (Å), angles (°) and torsionangles (°) with e.s.d.'s in parentheses

| Cr-S(1)                   | 2.428(1)                                                           | P(1) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.817 (3)                               |
|---------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Cr-S(2)                   | 2.437 (1)                                                          | P(1) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.817 (4)                               |
| Cr-S(3)                   | 2.447 (1)                                                          | P(2) - C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.825 (4)                               |
| Cr-S(4)                   | 2.447 (1)                                                          | P(2) - C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.819 (4)                               |
| Cr-S(5)                   | 2.451 (1)                                                          | P(3) - C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.835 (6)                               |
| Cr-S(6)                   | 2.441(1)                                                           | P(3) - C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.817 (5)                               |
| P(1) - S(1)               | 2.017(1)                                                           | C(1) - C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.495 (6)                               |
| P(1) - S(2)               | 2.020(1)                                                           | C(3) - C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.517 (6)                               |
| P(2) - S(3)               | 2.013(1)                                                           | C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.505 (7)                               |
| P(2)-S(4)                 | 2.020(1)                                                           | C(7) - C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.498 (7)                               |
| P(3)-S(5)                 | 2.017 (1)                                                          | C(9) - C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.470 (9)                               |
| P(3)-S(6)                 | 1.998 (1)                                                          | C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.484 (9)                               |
| S(1) - S(2)               | 3-198 (1)                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| S(3)-S(4)                 | 3.214 (1)                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| S(5)-S(6)                 | 3.227 (1)                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
|                           |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| S(1)-Cr-S(2)              | 82.21 (3)                                                          | S(1) - P(1) - C(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 112.38 (14)                             |
| S(3)-Cr-S(4)              | 82.11 (3)                                                          | S(2) - P(1) - C(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 113-19 (15)                             |
| S(5)-Cr-S(6)              | 82.54 (4)                                                          | S(3)-P(2)-C(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112.47 (16)                             |
| S(1) - P(1) - S(2)        | 104-81 (5)                                                         | S(4)-P(2)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112-13 (17)                             |
| S(3) - P(2) - S(4)        | 105.66 (5)                                                         | S(5)-P(3)-C(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111.78 (21)                             |
| S(5)-P(3)-S(6)            | 106-95 (6)                                                         | S(6)-P(3)-C(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 110.72 (20)                             |
| C(1) - P(1) - C(3)        | 103-13 (19)                                                        | P(1)-C(1)-C(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115-18 (29)                             |
| C(5)-P(2)-C(7)            | 103-43 (21)                                                        | P(1)-C(3)-C(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114-57 (31)                             |
| C(9)-P(3)-C(11)           | 107.70 (32)                                                        | P(2)-C(5)-C(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114-38 (29)                             |
|                           |                                                                    | P(2)-C(7)-C(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114.73 (33)                             |
|                           |                                                                    | P(3)-C(9)-C(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115-57 (54)                             |
|                           |                                                                    | P(3)-C(11)-C(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 115-13 (40)                             |
|                           | (4) 171.0 (2)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| C(1) = P(1) = C(3) = C(3) | $\begin{array}{c} (4) & -171.9 (3) \\ (2) & 176.7 (3) \end{array}$ | C(6)-C(5)-P(2)-C(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1) -169.8(4)                           |
| C(2) = C(1) = P(1) = C(1) | $(3) 1/0 \cdot / (3)$<br>(8) 175.2 (4)                             | C(3) - F(3) - C(11) - C(3) - | $(12) -108 \cdot 1(5)$<br>(11) -64.4(7) |
|                           | (5) 175-2 (4)                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |

stabilized by van der Waals forces only; the closest intermolecular contact involving the non-hydrogen atoms is 3.74(1) Å [C(11)–C(11), 1–x, 2–y, 2–z].

Comparison of the title compound with  $[Cr{S_2}-P(OC_2H_5)_2\}_3]$  (Schousboe-Jensen & Hazell, 1972) reveals that the replacement of the OC\_2H\_5 groups with  $C_2H_5$  has no significant effect on the bond distances and angles in the CrS<sub>6</sub> octahedra or in the deformation of the octahedra. However, the conformations of the  $C_2H_5$  and  $OC_2H_5$  groups are different, one being (-ap, -ap) and two (-ac, ac) in  $[Cr{S_2P(OC_2H_5)_2}]$ .

## References

- ABRAHAMS, S. C. & KEVE, E. T. (1971). Acta Cryst. A27, 157-165.
- CAVELL, R. G., BYERS, W. & DAY, E. D. (1971). Inorg. Chem. 10, 2710–2715.
- HERTEL, H. & KUCHEN, W. (1971). Chem. Ber. 104, 1735-1739.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- KLYNE, W. & PRELOG, V. (1960). Experimentia, 16, 521-523.
- KUCHEN, W., METTEN, J. & JUDAT, A. (1964). Chem. Ber. 97, 2306–2315.

KUCHEN, W. & ROHRBECK, A., (1972). Chem. Ber. 105, 132-136.

- LUNDGREN, J.-O. (1982). Rep. UUIC-B13-4-05. Univ. of Uppsala, Sweden.
- SCHOUSBOE-JENSEN, H. V. F. & HAZELL, R. G. (1972). Acta Chem. Scand. 26, 1375–1382.

STIEFEL, E. I. & BROWN, G. F. (1972). Inorg. Chem. 11, 434-436.

WASSON, J. R., WOLTERMAN, G. M. & STOKLASA, H. J. (1973). Fortschr. Chem. Forsch. 35, 65-129.

